How do you solve each system of equations and then check the answer algebraically? 11) -6x+3y=33 -4x+y=16 12)2y=5x-1 x+y=-1
1 Answer
Jan 11, 2018
Explanation:
#(11)#
#-6x+3y=33to(1)#
#-4x+y=16to(2)#
#"from "(2)color(white)(x)y=16+4xto(3)#
#color(blue)"Substitute "y=16+4x" in equation "(1)#
#-6x+3(16+4x)=33#
#rArr-6x+48+12x=33#
#rArr6x+48=33#
#"subtract 48 from both sides"#
#6xcancel(+48)cancel(-48)=33-48#
#rArr6x=-15#
#"divide both sides by 6"#
#(cancel(6) x)/cancel(6)=(-15)/6#
#rArrx=-15/6=-5/2#
#"substitute this value in equation "(3)#
#rArry=16+(4xx-5/2)=16-10=6#
#rArr(x,y)to(-5/2,6)#
#color(blue)"As a check"#
#"substitute the solution into either of the 2 equations"#
#(2)to(-4xx-5/2)+6=10+6=16larr" True"#
#"this confirms that "(-5/2,6)" is the solution"#
#(12)#
#"the solution is "(x,y)to(-1/7,-6/7)#
#"this is done in exactly the same way as 11"#
#"you may wish to try it for yourself"#