How do you solve for x: cos^2x - sin^2x = sinx?

2 Answers
Apr 15, 2015

cos^2x-sin^2x=sinx

(1-sin^2x)-sin^2x=sinx color(white)"ss" (use Pythagorean Identity)

1-2sin^2x=sinx

0=2sin^2x+sinx-1

2sin^2x+sinx-1 = 0

(2sinx-1)(sinx+1)=0 color(white)"ss" (it may help to substitute
color(white)"ssssssssssssssssssssssssssssssssss" 2S^2 + S -1 =0
color(white)"ssssssssssssssssssssssssssssssssss" (2S-1)( S +1) =0

So 2sinx -1 =0 OR sinx+1=0
and sinx = 1/2 OR sinx = -1

sinx = 1/2 gives us x= pi/6 + 2 pi k or (5 pi)/6+2 pi k
sinx = -1 gives us x=(3 pi)/2 +2 pi k
color(white)"ssssssssssssssssssssssssss" where k is any integer

Apr 15, 2015

Solve the equation: f(x) = cos^2 x - sin^2 x - sin x = 0.
Replace cos^2 x by (1 - sin^2 x)
f(x) = 1 - sin^2 x - sin^2 x - sin x = 0. Call t = sin x
Quadratic equation in t: f(t) = -2 t^2 - t + 1 = 0.
Solve this quadratic equation. There are 2 real roots : t1 = -1 and t2 = 1/2.
Solve the basic trig equation: t1 = sin x = -1 --> x = 3Pi/2
Solve t2 = sin x = 1/2 --> x = Pi/6 ; and x = 5Pi/6.
Within period (0. 2Pi), there are 3 answers: Pi/6; 5Pi/6; and 3Pi/2.