How do you solve for x if cos (6x-20) = sin (2x - 10)cos(6x20)=sin(2x10)?

1 Answer
Jul 24, 2018

x=15x=15

Explanation:

sin x =cos (90-x)sinx=cos(90x)
cosx = sin (90-x)cosx=sin(90x)

cos (6x-20)=sin(90-(6x-20))=sin(90-6x+20)=sin(110-6x)cos(6x20)=sin(90(6x20))=sin(906x+20)=sin(1106x)

sin(110-6x)=sin(2x-10)sin(1106x)=sin(2x10)

110-6x=2x-101106x=2x10

120=8x120=8x

x=15x=15

Sub x=15x=15 into the equation
LHS:
cos(6x-20)cos(6x20)
=cos(6times15-20)=cos(6×1520)
=cos(90-20)=cos(9020)
=cos70=cos70

RHS:
sin(2x-10)sin(2x10)
=sin(2times15-10)=sin(2×1510)
=sin(30-10)=sin(3010)
=sin20=sin20
=cos(90-20)=cos(9020)
=cos70=cos70
=LHS=LHS

Therefore, x=15x=15 is correct