How do you solve for x in 3ln3x=63ln3x=6?

1 Answer
Dec 31, 2015

x=e^2/3x=e23

Explanation:

Method One

Divide both sides by 33.

ln3x=2ln3x=2

To undo the natural logarithm, exponentiate both sides with base ee.

e^(ln3x)=e^2eln3x=e2

3x=e^23x=e2

x=(e^2)/3x=e23

Method Two

Rewrite the original expression using logarithm rules.

ln((3x)^3)=6ln((3x)3)=6

ln(27x^3)=6ln(27x3)=6

e^(ln(27x^3))=e^6eln(27x3)=e6

27x^3=e^627x3=e6

x^3=(e^6)/27x3=e627

(x^3)^(1/3)=(((e^2)^3)/(3^3))^(1/3)(x3)13=(e2)33313

x=(e^2)/3x=e23