cos(2x)+2cos(x)+1 = 0cos(2x)+2cos(x)+1=0 when
x = pi/2x=π2 (plus n pinπ for all integer nn)
or
x = pix=π (plus 2n pi2nπ for all integer nn)
How we got this :
cos(2x) + 2cos(x) + 1 = 0cos(2x)+2cos(x)+1=0
2cos^2(x) - 1 + 2cos(x )+ 1 = 02cos2(x)−1+2cos(x)+1=0 by a double angle formula for cos(2x)cos(2x)
(2) (cos^2(x) + cos(x) ) = 0(2)(cos2(x)+cos(x))=0
(2) (cos(x)) (cos(x)+1) = 0(2)(cos(x))(cos(x)+1)=0
So
cos(x) = 0cos(x)=0 which gives x = pi/2, (3pi)/2, (5pi)/2x=π2,3π2,5π2 etc.
or
cos(x) = -1cos(x)=−1 which gives x = pi, 3pi, 5pix=π,3π,5π etc.