How do you solve for x in log6(2x)+log6(34x)=1?

1 Answer
Feb 6, 2016

x=0

Explanation:

Property of Logarithmic expression

logA+logB=log(AB) (1)
nlogA=logAn (2)
logay=xax=y (3)

Given :

log6(2x)+log6(34x)=1

Rewrite as:

Using rule (2)

log6(2x)(3x)=1

log6(62x3x+x2)=1

log6(65x+x2)=1

Using rule (3)

61=65x2+x2

Now we have a simple quadratic equation, let's solve it.

x25x+6=6

6 6

========

x25x=0
x(x5)=0

x=0 or x=5

Always check your answer if you have 2 solutions when solving a log equation .

Check x=5

x=5

log6(25)+log6(34(5))=1

log6(3)+log6(17)=1

x=5 Extraneous solution

Can't evaluate the expression on the left, because the argument of any logarithm always POSITIVE and greater than zero, due to domain restriction

Check x=0

log6(20)+log6(34(0))=1

log6(2)+log6(3)=1

log6(6)=1

1=1

Solution x=0