How do you solve for x in log_6 3x-log_6 (x+1)=log_6 1?

1 Answer
Feb 14, 2015

You can use the property of the log:
log_aM-log_aN=log_a(M/N)
So you have:
log_6((3x)/(x+1))=log_6(1)
log_6((3x)/(x+1))=0
Because from the definition od logarithm:
log_ab=x => a^x=b
and: log_6(1)=0

as for:
log_6((3x)/(x+1))=0
again you get:
((3x)/(x+1))=6^0=1
3x=x+1
x=1/2