How do you solve for x in log_x(32)=5?

1 Answer
Aug 21, 2015

If log_x(32)=5 then x^5 = x^(log_x(32)) = 32.

So x = root(5)(32) = root(5)(2^5) = 2.

Explanation:

Alternatively, use the change of base formula:

5 = log_x(32) = ln(32)/ln(x)

So ln(x) = ln(32)/5 = ln(root(5)(32)) = ln(root(5)(2^5)) = ln(2)

Hence x = 2