How do you solve for x in: tan^2 x - 3 tan x - 4 = 0tan2x3tanx4=0?

1 Answer
Apr 15, 2015

Let k=tan(x)k=tan(x)
then
tan^2(x) -3tan(x)-4 = 0tan2(x)3tan(x)4=0
becomes
k^2-3k-4=0k23k4=0

(k-4)(k+1) = 0(k4)(k+1)=0

So we are looking for
k=4k=4 or k=-1k=1
that is, for
tan(x) = 4tan(x)=4 or tan(x)=-1tan(x)=1

x = arctan(4)x=arctan(4)
or
x= arctan(-1) = -pi/4 +n(pi)x=arctan(1)=π4+n(π) for all n epsilon ZZ