How do you solve for xy'-y=3xy given y(1)=0?

1 Answer
Mar 8, 2015

I would write it as;
xdy/dx=3xy+y
xdy/dx=y(3x+1)
dy/y=(3x+1)/xdx
Integrating;
intdy/y=int(3x+1)/xdx
intdy/y=int(3+1/x)dx
ln(y)=3x+ln(x)+c
y=e^(3x+ln(x)+c)
And finally;
y=e^(3x)×e^(ln(x))×e^c=Axe^(3x)
where A=e^c

We can now find the value of the constant A;
0=Ae^3
A=0
The particular solution to your equation is then:
y=0xe^(3x)=0