How do you solve ln(3x+1)-ln(5+x)=ln2?

1 Answer
Oct 1, 2015

x=9

Explanation:

ln(3x+1)-ln(5+x)=ln(2)=> using laws of logs:

ln[(3x+1)/(x+5)]=ln(2)=> if ln(A)=ln(B)hArrA=B:

(3x+1)/(x+5)=2=> multiply by (x+5):

3x+1=2(x+5)=> expand right side:

3x+1=2x+10=> subtract-2x and 1 from both sides:

3x-2x=10-1=> simplify:

x=9