How do you solve ln(-3x-1)-ln7=2ln(3x1)ln7=2?

1 Answer
Jul 25, 2016

x=-(7e^2+1)/3x=7e2+13

Explanation:

Since loga-logb=loga/blogalogb=logab,

you can rewrite the equation as:

ln((-3x-1)/7)=2ln(3x17)=2

you can note that 2=lne^22=lne2, then

ln((-3x-1)/7)=lne^2ln(3x17)=lne2

or

(-3x-1)/7=e^2 and -3x-1>03x17=e2and3x1>0

-3x-1=7e^2 and -3x>13x1=7e2and3x>1

-3x=7e^2+1 and 3x<-13x=7e2+1and3x<1

x=-(7e^2+1)/3 and x<-1/3x=7e2+13andx<13

that's true