How do you solve ln(x+4)-ln(x+3)=lnxln(x+4)ln(x+3)=lnx?

1 Answer
Mar 23, 2016

x=-1+sqrt(5)x=1+5

Explanation:

Dominion: color(blue)(x+4>0 and x+3>0 and x>0 <=> x>0x+4>0andx+3>0andx>0x>0

ln(x+4)-ln(x+3)=ln(x)ln(x+4)ln(x+3)=ln(x)

ln(x+4)=ln(x+3)+ln(x)ln(x+4)=ln(x+3)+ln(x)

The sum of logarithms is the logarithm of the product

ln(x+4)=ln((x+3)x)ln(x+4)=ln((x+3)x)

color(blue)(ln(a)=ln(b) ->a=bln(a)=ln(b)a=b

x+4=(x+3)xx+4=(x+3)x

x+4=x^2+3x x+4=x2+3x

x^2+2x-4 =0x2+2x4=0

x=(-2+-sqrt(2^2-4*1*(-4)))/2x=2±2241(4)2

x=(-2+-sqrt(4+16))/2x=2±4+162

x=(-2+-sqrt(20))/2x=2±202

x=(-2+-2sqrt(5))/2x=2±252

x=-1+-sqrt(5)x=1±5

x=-1+sqrt(5)x=1+5, because x must be larger than 0