How do you solve ln(x + 5) - ln(3) = ln(x - 3)ln(x+5)ln(3)=ln(x3)?

1 Answer
Jul 8, 2015

I found x=7x=7

Explanation:

You can use one rule of the logs:
loga-logb=loga/blogalogb=logab
to get:
ln((x+5)/3)=ln(x-3)ln(x+53)=ln(x3)
take the exponential of both sides:
e^(ln((x+5)/3))=e^(ln(x-3))eln(x+53)=eln(x3)
that gives you (cancelling lnln and ee):
(x+5)/3=x-3x+53=x3
x+5=3x-9x+5=3x9
2x=142x=14
x=7x=7