How do you solve ln(x) = 5 - ln(x + 2)?

1 Answer
Mar 30, 2018

color(crimson)(x =+ sqrt(1 + e^5) - 1

Explanation:

![https://www.in.pinterest.com/pin/310326230555724900/](useruploads.socratic.org)

ln (x) = 5 - ln(x+2)

ln x + ln (x +2) = 5

Applying Rule 1 from the table above,

ln (x * (x+2)) = 5

Applying Rule 6,

ln (e^5) = 5

ln(x(x+5)) = ln e^5#

x(x+5) = e^5, " Removing **ln** on both sides"

x^2 +2x - e^5 = 0

Solving for x,

x = (-2 +-sqrt(4 +4e^5)) / 2

x =( -2 + sqrt(4 + 4e^5)) / 2 " "color(green)(True) , " "(-2 -sqrt(4 + 4 e^5)) / 2 " " color(red)(false)

color(crimson)(x = sqrt(1 + e^5) - 1