How do you solve ln(x-6)+ln(x+3)=ln22ln(x6)+ln(x+3)=ln22?

1 Answer
Aug 13, 2015

color(red)( x=8)x=8

Explanation:

ln(x-6)+ln(x+3)= ln22ln(x6)+ln(x+3)=ln22

Recall that lna+lnb=lnablna+lnb=lnab.

ln(x-6)(x+3)=ln22ln(x6)(x+3)=ln22

Convert the logarithmic equation to an exponential equation.

e^ln((x-6)(x+3)) = e^ln22eln((x6)(x+3))=eln22

Remember that e^lnx =xelnx=x, so

(x-6)(x+3)=22(x6)(x+3)=22

x^2-3x-18=22x23x18=22

x^2-3x-40=0x23x40=0

(x-8)(x+5)=0(x8)(x+5)=0

x-8=0x8=0 and x+5=0x+5=0

x=8x=8 and x=-5x=5 are possible solutions.

Check:

ln(x-6)+ln(x+3)= ln22ln(x6)+ln(x+3)=ln22

If x=8x=8,

ln(8-6)+ln(8+3)=ln22ln(86)+ln(8+3)=ln22

ln2+ln11=ln22ln2+ln11=ln22

ln(2×11)=ln22ln(2×11)=ln22

ln22=ln22ln22=ln22

x=8x=8 is a solution.

If x=-5x=5,

ln(-5-6)+ln(-5+3) =ln22ln(56)+ln(5+3)=ln22

ln(-11)+ln(-2)=ln22ln(11)+ln(2)=ln22

But ln(-11)ln(11) and ln(-2)ln(2) are not defined.

x=-5x=5 is not a solution.