How do you solve ln x - ln (1/x) = 2lnxln(1x)=2?

2 Answers
Mar 16, 2018

x=ex=e

Explanation:

Since ln(1/x) = - ln xln(1x)=lnx, the equation becomes

2 ln x = 2 implies ln x =12lnx=2lnx=1

So

x=ex=e

Mar 16, 2018

x=ex=e

Explanation:

We have, (1) log_aX=n<=>X=a^n(1)logaX=nX=an
(2)log_a(M/N)=log_aM-log_aN(2)loga(MN)=logaMlogaN
Here,
lnx-ln(1/x)=2lnxln(1x)=2, Applying (2) ,we get
=>lnx-[ln1-lnx]=2lnx[ln1lnx]=2
=>lnx-ln1+lnx=2lnxln1+lnx=2, where, ln1=0ln1=0
=>2lnx=22lnx=2
=>lnx=1=>log_ex=1lnx=1logex=1, Applying (1) ,we get
=>x=e^1=ex=e1=e