How do you solve ln6x +ln2x = ln13 ln6x+ln2x=ln13?

1 Answer
Apr 13, 2016

x=sqrt(13/12)=1.041x=1312=1.041, nearly.

Explanation:

ln a+ln b = ln ablna+lnb=lnab
So, ln(6x)(2x))=ln(12x^2)=ln 13ln(6x)(2x))=ln(12x2)=ln13
So, 12x^2=1312x2=13
x^2=13/12x2=1312
x=+-sqrt(13/12)x=±1312
For the given form, negative solution is inadmissible.