In general
color(white)("XXX")log(A)+log(B) = log(AB)XXXlog(A)+log(B)=log(AB)
(this is one of the basic logarithmic rules)
Specifically
color(white)("XXX")ln(x)+ln(x+1) = ln(x^2+x)XXXln(x)+ln(x+1)=ln(x2+x)
and we are told, this is
color(white)("XXXXXXXXXXXXX")=ln(12)XXXXXXXXXXXXX=ln(12)
rArr x^2+x = 12⇒x2+x=12
color(white)("XXX")x^2+x-12=0XXXx2+x−12=0
color(white)("XXX")(x+4)(x-3)=0XXX(x+4)(x−3)=0
color(white)("XXX")x=-4XXXx=−4color(white)("XXX")XXXorcolor(white)("XXX")x=3XXXx=3
Since ln(x)ln(x) is not defined for negative values of xx
rArr x=3⇒x=3