How do you solve lnx+ln(x-2)=1lnx+ln(x2)=1?

2 Answers
Jul 20, 2016

I found: x=1+sqrt(1+e)x=1+1+e

Explanation:

We can use the property of logs that allows us to change the sum into a product of arguments as:
ln[x*(x-2)]=1ln[x(x2)]=1
then use the definition of log, applied to our natural log, to write:
x(x-2)=e^1x(x2)=e1
x^2-2x-e=0x22xe=0
solve for xx to get:
x_(1,2)=(2+-sqrt(4+4e))/2=(2+-2sqrt(1+e))/2x1,2=2±4+4e2=2±21+e2
x_1=1+sqrt(1+e)x1=1+1+e
x_2=1-sqrt(1+e)x2=11+e NOT (because negative)

Jul 20, 2016

Use the properties:

lna+lnb=ln(a*b)lna+lnb=ln(ab)

lnx=y=>x=e^ylnx=yx=ey

Then solve the quadratic equation. Answer is:

x_1=2.928x1=2.928

x_2=-0.928x2=0.928

Explanation:

lnx+ln(x-2)=1lnx+ln(x2)=1

Since lna+lnb=ln(a*b)lna+lnb=ln(ab)

ln(x*(x-2))=1ln(x(x2))=1

To add an lnln function to the right side we use x=lne^xx=lnex

ln(x*(x-2))=lne^1ln(x(x2))=lne1

lnxlnx is a 1-111 function:

x*(x-2)=ex(x2)=e

x^2-2x-e=0x22xe=0

Solving the quadratic:

Δ=(-2)^2-4*1*(-e)=4+4e

x_(1,2)=(-(-2)+-sqrt(4+4e))/(2*1)

From the calculator sqrt(4+4e)=3.857

x_1=2.928

x_2=-0.928