How do you solve log_10 4+log_10 25?

1 Answer
Jan 24, 2016

log_10 4 + log_10 25 = 2

Explanation:

If a, b, c > 0 then:

log_c(c) = 1

log_c(a) + log_c(b) = log_c(ab)

log_c(a^b) = b log_c(a)

So we find:

log_10(4) + log_10(25)

=log_10(4 * 25)

=log_10(100)

=log_10(10^2)

=2 log_10(10)

=2