How do you solve log_10(4x)-log_10(12+sqrtx)=2log10(4x)log10(12+x)=2?

1 Answer
Feb 5, 2017

x=(125(10+sqrt73))/2x=125(10+73)2

Explanation:

As loga-logb=log(a/b)logalogb=log(ab)

log_10(4x)-log_10(12+sqrtx)=2log10(4x)log10(12+x)=2 is equivalent to

log_10((4x)/(12+sqrtx))=2log10(4x12+x)=2

Hence from definition of log, we have

((4x)/(12+sqrtx))=100(4x12+x)=100

or 4x-100sqrtx-1200=04x100x1200=0 and dividing by 44

x-25sqrtx-300=0x25x300=0 and using quadratic formula

sqrtx=(25+-sqrt(625+1200))/2=(25+-5sqrt73)/2x=25±625+12002=25±5732

But we cannot have 4x<04x<0, hence sqrtx=(25+5sqrt73)/2x=25+5732

x=(25+5sqrt73)^2/4=(625+1825+250sqrt73)/4x=(25+573)24=625+1825+250734

or (2500+250sqrt73)/42500+250734

or (250(10+sqrt73))/4250(10+73)4

or (125(10+sqrt73))/2125(10+73)2