How do you solve log_2(2x)=-0.65?

1 Answer
Mar 6, 2018

x=0.319color(white)(888)3 .d.p.

Explanation:

By the law of logarithms:

If:

y=log_ba

Then:

b^y=a

Since: y=log_ba

b^(log_ba)=a

Using this idea:

log_2(2x)=-0.65

2^(log_2(2x))=2^(-0.65)

2x=2^(-0.65)

Dividing by 2:

x=2^(-0.65)/2=0.319color(white)(888)3 .d.p.