How do you solve log_2 (3-x) + log_2 (2-x) = log_2 (1-x)?

1 Answer
Jun 22, 2018

color(chocolate)(x = 2 +- i)

Explanation:

![mathspace.co)

log_2 (3-x) + log_2(2-x) = log_2 (1-x)

log_2 ((3-x)(2-x)) = log_2 (1-x)

((3-x)(2-x)) = (1-x)

x^2 - 5x + 6 = 1 - x

x^2 - 4x + 5 = 0

x = (4 +- sqrt(16 - 20)) / 2

x = (4 +- sqrt-4) / 2

color(chocolate)(x = 2 +- i)