How do you solve log_2((3x-2)/5)=log_2(8/x)?

2 Answers

x=4

Explanation:

log_"2"((3x-2)/5)=log_"2"(8/x)

D_"f":x in RR_"+"^"*"

(3x-2)/5=8/x

3x²-2x=40

3x²-2x-40=0

Δ=4+4*3*40

Δ=484

x_"1"=(2-sqrt(484))/6

x_"2"=(2+sqrt(484))/6

cancel(x_"1"=-10/3) impossible due to our D_"f"

x_"2"=4

\0/ here's our answer!

Jul 5, 2018

color(maroon)(x = 4

Explanation:

![mathspace.comathspace.co)

log_2 ((3x-2)/5) = log_2 (8/x)

(3x-2)/5 = (8/x), " Removing Log on both sides"

3x^2 - 2x = 40

3x^2 - 12x + 10x - 40 = 0

3x (x - 4) + 10 (x - 4) = 0

(x - 4) * (3x + 10) = 0

x = 4, color(crimson)(cancel(-10/3)

color(maroon)(x = 4