How do you solve log_3x+log_3(x-8)=2log3x+log3(x8)=2?

1 Answer
Mar 31, 2018

Thus, x=9 is the valid solution

Explanation:

log_3 x+log_3 (x-8)=2log3x+log3(x8)=2

logm+logn=logmnlogm+logn=logmn

log_3 x+log_3 (x-8)=log_3 x(x-8)log3x+log3(x8)=log3x(x8)

log_3 x(x-8)=2log3x(x8)=2

x(x-8)=3^2x(x8)=32

x(x-8)=9x(x8)=9

x^2-8x=9x28x=9

x^2-8x-9=0x28x9=0

x^2-9x+1x-9=0x29x+1x9=0

x(x-9)+1(x-9)=0x(x9)+1(x9)=0

(x+1)(x-9)=0(x+1)(x9)=0

x=-1, x=9x=1,x=9

x=-1,9x=1,9

Here, x needs to be a positive number .

Thus, x=9 is the valid solution