How do you solve log_3z=4log_z3log3z=4logz3?
1 Answer
Jan 29, 2016
Explanation:
Rewrite everything using the change of base formula.
The change of base formula provides a way of rewriting a logarithm in terms of another base, like follows:
log_ab=log_cb/log_calogab=logcblogca
In this case, the new base I will choose is
log_3z=4log_z3log3z=4logz3
=>lnz/ln3=(4ln3)/lnz⇒lnzln3=4ln3lnz
Cross multiply.
=>(lnz)^2=4(ln3)^2⇒(lnz)2=4(ln3)2
Take the square root of both sides.
=>lnz=2ln3⇒lnz=2ln3
We can modify the right hand side using the rule:
=>lnz=ln(3^2)=ln9⇒lnz=ln(32)=ln9
Use the fairly intuitive rule that if
=>z=9⇒z=9