How do you solve log_4 (m + 2) - log_4(m - 5) = log_4 8?
1 Answer
Apr 28, 2016
Explanation:
Given,
log_4(m+2)-log_4(m-5)=log_4(8)
We can simplify the left side of the equation using the logarithmic property,
log_4((m+2)/(m-5))=log_4(8)
Since the equation now follows a "
(m+2)/(m-5)=8
Solve for
m+2=8(m-5)
m+2=8m-40
7m=42
color(green)(|bar(ul(color(white)(a/a)m=6color(white)(a/a)|)))