How do you solve log_4 (m + 2) - log_4(m - 5) = log_4 8?

1 Answer
Apr 28, 2016

m=6

Explanation:

Given,

log_4(m+2)-log_4(m-5)=log_4(8)

We can simplify the left side of the equation using the logarithmic property, log_color(purple)b(color(red)m/color(blue)n)=log_color(purple)b(color(red)m)-log_color(purple)b(color(blue)n).

log_4((m+2)/(m-5))=log_4(8)

Since the equation now follows a "log=log" situation where the bases are the same on both sides, rewrite the equation without the "log" portion.

(m+2)/(m-5)=8

Solve for m.

m+2=8(m-5)

m+2=8m-40

7m=42

color(green)(|bar(ul(color(white)(a/a)m=6color(white)(a/a)|)))