How do you solve log_4x=log_8(4x)log4x=log8(4x)?

1 Answer
Aug 23, 2016

x = 2^4x=24

Explanation:

Using

log_a b= log_e a/(log_e b)logab=logealogeb

log_4x = (log_e x)/(log_e 4) = log_8(4x) = (log_e (4x))/(log_e 8)log4x=logexloge4=log8(4x)=loge(4x)loge8

but log_e 4 = 2 log_e 2loge4=2loge2 and log_e 8 = 3 log_e 2loge8=3loge2 so

log_e x/(2log_e 2) = (log_e x + 2log_e 2)/(3 log_e 2)logex2loge2=logex+2loge23loge2

3log_e x = 2log_e x+4 log_e 23logex=2logex+4loge2

and finally

log_e x = log_e 2^4logex=loge24

so

x = 2^4x=24