How do you solve log_5 6 +log_5 (2x^2)=log_5 48log56+log5(2x2)=log548?

1 Answer
Oct 5, 2016

x=+-2x=±2

Explanation:

Use log_b m+log_b n = log_b(mn)logbm+logbn=logb(mn)

Here, log_5 6+log_5(2x^2)= log_b (12x^2)=log_5 48log56+log5(2x2)=logb(12x2)=log548

Log function is a bijective (single valued) function. So,

12x^2=4812x2=48, and so,

x^2=4 to x =+-2x2=4x=±2