How do you solve Log_(5)x + log_(3)x = 1?

1 Answer
Jun 27, 2016

x = 3^{(log_e 5)/(log_e 15)}

Explanation:

We know that

log_a b = (log_eb)/(log_e a)

Then

Log_(5)x + log_(3)x = 1->(log_e x)/(log_e 5)+(log_e x)/(log_e 3)=1

or

log_e x= (log_e 5 cdot log_e 3)/(log_e 5 + log_e 3)

or

x = e^{(log_e 5 cdot log_e 3)/(log_e 5 + log_e 3)}

x = 3^{(log_e 5)/(log_e 15)}