How do you solve log_6 5-log_6(x-7)=1?

3 Answers
Sep 18, 2016

x = 47/6

Explanation:

Two principles at work here...

If you are subtracting the logs, divide the numbers.

All numbers or all logs, not both! Change 1 to a log.

log_6 5-log_6(x-7)=1

log_6 (5/(x-7)) = log_6 6 " "larr if log A = log B, then A=B

5/(x-7) = 6

5 = 6(x-7)

5 = 6x -42

47 = 6x

47/6 = x

Sep 18, 2016

x=47/6

Explanation:

Using the color(blue)"laws of logarithms"

color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(logx-logy=log(x/y))color(white)(a/a)|)))

rArrlog_6 5-log_6(x-7)=log_6(5/(x-7))

color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(log_b a=nhArra=b^n)color(white)(a/a)|)))

rArrlog_6(5/(x-7))=1rArr5/(x-7)=6^1=6

rArr6(x-7)=5rArr6x-42=5

rArr6x=47rArrx=47/6

Sep 18, 2016

x = (47) / (6)

Explanation:

We have: log_(6)(5) - log_(6)(x - 7) = 1

Using the laws of logarithms:

=> log_(6)((5) / (x - 7)) = 1

=> (5) / (x - 7) = 6^(1)

=> (5) / (x - 7) = 6

=> 5 = 6 (x - 7)

=> x - 7 = (5) / (6)

=> x = (47) / (6)

Therefore, the solution to the equation is x = (47) / (6).