How do you solve log_7(x-3)-log_7x=3?

1 Answer
Dec 1, 2016

x=-1/114

Explanation:

Condense the logs on the left -- Subtracting logs of the same base can be rewritten as dividing within the log:
log_ab-log_ac=log_a(b/c)

log_7(x-3)-log_7x=3
log_7((x-3)/x)=3

Now use the log rule: If log_ab=n, then a^n=b.
7^3=(x-3)/x

343=(x-3)/x

Multiply each side by x:
343x=x-3

Subtract x from each side:
342x=-3

x=-3/342

x=-1/114