How do you solve log_b(x^2 -2) + 2log_b 6 = log_b6xlogb(x22)+2logb6=logb6x?

1 Answer
May 21, 2016

x={3/2,4/3}x={32,43}

Explanation:

log_b(x^2-2)+2log_b6=log_b6xlogb(x22)+2logb6=logb6x

log_b(x^2-2)+log_b6^2=log_b6xlogb(x22)+logb62=logb6x

log_b(x^2-2)*6^2=log_b6xlogb(x22)62=logb6x

log_b(x^2-2)*6^2-log_b6x=0logb(x22)62logb6x=0

log_b(((x^2-2)*6^2)/(6x))=0logb((x22)626x)=0

log_b((6x^2-12)/x)=0logb(6x212x)=0

(6x^2-12)/x=b^06x212x=b0

b^0=1b0=1

(6x^2-12)/x=16x212x=1

6x^2-12=x" "6x^2-x-12=06x212=x 6x2x12=0

(2x-3)(3x+4)=0(2x3)(3x+4)=0

2x-3=0" "2x=3" " x=3/22x3=0 2x=3 x=32

3x+4=0" "3x=4" "x=4/33x+4=0 3x=4 x=43

x={3/2,4/3}x={32,43}