How do you solve log(x^2+4)-log(x+2)=2+log(x-2)?

1 Answer

Please see below.

Explanation:

Here,

log(x^2+4)-log(x+2)=2+log(x-2)

=>log(x^2+4)-log(x+2)-log(x-2)=2

=>log(x^2+4)-{log(x+2)+log(x-2)}=2

Using : logM+logN=log(MN)

=>log(x^2+4)-log[(x+2)(x-2)]=2

=>log(x^2+4)-log(x^2-4)=2

Using : logM-logN=log(M/N)

log((x^2+4)/(x^2-4))=2

(i)If it is common logarithm-logarithm to base 10 ,then

log_10 ((x^2+4)/(x^2-4))=2

:.(x^2+4)/(x^2-4)=10^2,where,x^2!=4=>color(red)(x!=+-2

x^2+4=100(x^2-4)

:.100x^2-400-x^2-4=0

99x^2-404=0

:.x^2=404/99~~4.08

:.x=+-sqrt4.08~~2.02

But, x~~-2.02 will make log(x-2) meaningless.

:. x~~2.02

Note that most of the textbooks use logx as,
logarithm to base 10

(ii)If it is color(blue)"natural logarithm ??-logarithm to base e " ,then

log_e ((x^2+4)/(x^2-4))=2

:.(x^2+4)/(x^2-4)=e^2,where,x^2!=4=>color(red)(x!=+-2

x^2+4=e^2(x^2-4)

:.e^2x^2-4e^2-x^2-4=0

:.e^2x^2-x^2=4e^2+4

:.x^2(e^2-1)=4(e^2+1)

:.x^2=4((e^2+1)/(e^2-1))

:.x=2sqrt((e^2+1)/(e^2-1))