How do you solve Log(x+2)+log(x-1)=4?

1 Answer
Nov 22, 2016

x~=99.51

Explanation:

log(x+2)+log(x-1)=4

hArrlog((x+2)(x-1))=4

i.e. (x+2)(x-1)=10^4=10000

or x^2+x-10002=0

and using quadratic formula x=(-b+-sqrt(b^2-4ac))/(2a)

x=(-1+-sqrt(1+40008))/2

Now, we cannot use - sign as that makes log(x+2) or log(x-1) not possible.

Hence x=(-1+sqrt(1+40008))/2~=(-1+200.02)/2=199.02/2=99.51