How do you solve log(x-3)+log x=1log(x3)+logx=1?

1 Answer
May 4, 2016

x=5 x=5

Explanation:

Use Properties: log_b(xy)=log_b x+log_bylogb(xy)=logbx+logby

log_bx=y iff b^y=xlogbx=yby=x

log (x(x-3))=1log(x(x3))=1 color(white)(xxxxxx)××× [ 1 = log10]

log(x^2-3x)=log10log(x23x)=log10

x^2-3x^1 = 10^1x23x1=101

x^2-3x-10=0x23x10=0

(x-5)(x+2)=0(x5)(x+2)=0

x=5 or x=-2x=5orx=2