How do you solve log2+logx=1log2+logx=1?

1 Answer
Jul 12, 2016

5 (Assuming log = log_10log=log10)

Explanation:

log_10 2 + log_10 x = 1log102+log10x=1

Using: log_n a + log_n b = log_n(ab)logna+lognb=logn(ab) we may rewrite the equation as:

log_10 2x = 1log102x=1

Using: log_n a = b -> a = n^blogna=ba=nb we may simplify the equation as:

2x = 10^12x=101

2x = 102x=10

x = 5x=5