How do you solve n^2+2n-24<=0?

1 Answer
Jan 28, 2017

The answer is n in [-6,4]

Explanation:

Let's factorise the inequality

n^2+2n-24=(n+6)(n-4)

Let f(n)=(n+6)(n-4)

Now, we can build the sign chart

color(white)(aaaa)ncolor(white)(aaaa)-oocolor(white)(aaaa)-6color(white)(aaaaa)4color(white)(aaaa)+oo

color(white)(aaaa)n+6color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)n-4color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(n)color(white)(aaaaaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(n)<=0 when n in [-6,4]