How do you solve #n! = 56(n-2)!#?

1 Answer
Nov 29, 2015

I found:
#n_1=8#
#n_2=-7#

Explanation:

We can try this:
#n! =56(n-2)!#
#(n!)/((n-2)!) =56#
then use the property of the factorials and write:
#(n(n-1)(n-2)!)/((n-2)!)=56#
simplify:
#(n(n-1)cancel((n-2)!))/(cancel((n-2)!))=56#
to get:
#n(n-1)=56#
#n^2-n-56=0#
using the Quadratic Formula:
#n_(1,2)=(1+-sqrt(1+224))/2=(1+-15)/2#
so:
#n_1=8#
#n_2=-7#