Let's rewrite the equation
-p^2+10p-7<=14, hArr, p^2-10p+21>=0
Let 's factorise the LHS
(p-3)(p-7)>=0
Let f(p)=(p-3)(p-7)
Now we can make the sign chart
color(white)(aaaa)pcolor(white)(aaaaa)-oocolor(white)(aaaa)3color(white)(aaaaa)7color(white)(aaaa)+oo
color(white)(aaaa)p-3color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)p-7color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)+
color(white)(aaaa)f(p)color(white)(aaaaaa)+color(white)(aaaa)-color(white)(aaaa)+
Therefore,
f(p)>=, when p in ] -oo,3 ]uu [7,+ oo[