Let's factorise the equation
p^5-p=p(p^4-1)=p(p^2+1)(p^2-1)
=p(p^2+1)(p+1)(p-1)
The term (p^2+1)>0
Let f(p)=p^5-p
Let's do the sign chart
color(white)(aaaa)pcolor(white)(aaaa)-oocolor(white)(aaaa)-1color(white)(aaaa)0color(white)(aaaa)1color(white)(aaaa)+oo
color(white)(aaaa)p+1color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaa)+color(white)(aaa)+
color(white)(aaaa)pcolor(white)(aaaaaaaa)-color(white)(aaaa)-color(white)(aaa)+color(white)(aaa)+
color(white)(aaaa)p-1color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaa)-color(white)(aaa)+
color(white)(aaaa)f(p)color(white)(aaaaa)-color(white)(aaaaa)+color(white)(aaa)-color(white)(aaa)+
So f(p)>0 when p in ] -1,0 [uu ] 1,+oo [
graph{x^5-x [-8.89, 8.89, -4.444, 4.445]}