How do you solve sec^2x-1+tanx-sqrt3tanx=sqrt3 for 0<=x<=2pi?

1 Answer
Sep 21, 2016

x=(3pi)/4, (7pi)/4, (pi)/3, (4pi)/3

Explanation:

sec^2x-1+tanx-sqrt(3)tanx=sqrt3 for0 <= x <= 2pi

Using the Pythagorean identity tan^2x+1=sec^2x, substitute for the sec^2x term.

(tan^2x+1)-1+tanx-sqrt(3)tanx=sqrt3

tan^2x+tanx-sqrt(3)tanx=sqrt3color(white)(11aaa11)Combine like terms

tan^2x+tanx-sqrt3tanx-sqrt3=0color(white)(aaa)Subtract sqrt3 from both color(white)(AaaaaaaaaaaaaaaaaaaaaaaAAAAAAAAAAA)sides

tan^2x +(1-sqrt3)tanx-sqrt3=0color(white)(aaaaa)Group the 2 tan terms

(tanx+1)(tanx-sqrt3)=0color(white)(aaaaaaaaa)Factor

tanx=-1color(white)(aaaaa)tanx=sqrt3color(white)(aaaaa)Set factors = 0 and solve

x=(3pi)/4,(7pi)/4color(white)(aaaaaa)x=(pi)/3,(4pi)/3color(white)(aaaa)Use the unit circle*

*To find values for tanx=-1 on the unit circle, sinx and cosx must be equal but with opposite signs. These conditions are found at (3pi)/4 where sinx=sqrt2/2, cosx=-sqrt2/2 and tanx=sinx/cosx=-1
and at (7pi)/4 where sinx=-sqrt2/2, cosx=sqrt2/2 and
tanx=sinx/cosx=-1

Similarly, to find values for tanx=sqrt3 on the unit circle,
tanx=sinx/cosx=sqrt3/2-:1/2=sqrt3 at pi/3 and
tanx=sinx/cosx=-sqrt3/2-:-1/2=sqrt3 at (4pi)/3