How do you solve sec 4x = 2 in the interval 0 to 2pi?

1 Answer
Feb 12, 2016

x in {pi/12, (5pi)/12, (7pi)/12,(11pi)/12,(13pi)/12,(17pi)/12,(19pi)/12,(23pi)/12}

Explanation:

If sec(4x) = 2
then
color(white)("XXX")4x=2pi*k+-pi/3 for kinZZ
color(white)("XXXXXXXXXX")this is based on the standard angles:
color(white)("XXXXXXXXXX")cos(+-pi/3)=1/2

x=(pik)/2+-pi/12 = pi(6k+-1)/12
color(white)("XXX")for all values of k which evaluate as xin[0,2pi]

k=0 rarr x=pi/12 (other values give x < 0)

k=1 rarr x= (5pi)/12 or (7pi)/12

k=2 rarr x=(11pi)/12 or (13pi)/12

k=3 rarr x=(17pi)/12 or (19pi)/12

k=4 rarr x=(23pi)/12 (other values give x > 0)