How do you solve sin(1/2x)+cos(x)=1 in the interval [0, 2pi]?

1 Answer
May 24, 2016

x=0, pi/6, (5pi)/6 and 2pi in [0, 2pi]..

Explanation:

sin (x/2)+cos x= sin (x/2)+1-2 cos^2(x/2)=1.

So, sin (x/2)(1-2 sin (x/2))=0

The factor sin (x/2)=0, gives x=2npi, n=0,+-1,+-2,+-3,..

and the other factor 1-2sin (x/2)=0 gives sin (x/2)=1/2#, and so,

x=2(npi+(-1)^npi/6), n= 0, +-1, +-2, +-3,..

x=0, pi/6, (5pi)/6 and 2pi,in [0, 2pi].,