How do you solve sin^2(2x)+cos^2x=0sin2(2x)+cos2x=0?

1 Answer
Feb 23, 2017

For (x, 2pi)
pi/6; pi/2; (5pi)/6; (7pi)/6; (3pi)/2; (11pi)/6π6;π2;5π6;7π6;3π2;11π6

Explanation:

Reminder:
sin^2 (2x) = 4sin^2 x.cos^2 xsin2(2x)=4sin2x.cos2x
We get:
sin^2 (2x) + cos^2 x = cos^2 x(1 + 4sin^2 x) = 0sin2(2x)+cos2x=cos2x(1+4sin2x)=0
a. cos^2 x = 0cos2x=0 --> cos x = 0 --> 2 solutions:
x = pi/2x=π2 and x = (3pi)/2x=3π2
b. 1 + 4sin^2 x = 0 1+4sin2x=0--> sin^2 x = 1/4sin2x=14 -->
sin x = +- 1/2sinx=±12
Use trig table and unit circle.
sin x = 1/2sinx=12 --> x = pi/6x=π6 and x = (5pi)/6x=5π6
sin x = - 1/2sinx=12 --> x = (7pi)/6x=7π6 and x = (11pi)/6x=11π6