How do you solve sin^2(x) - cos^2(x) = 1 + cos(x)sin2(x)cos2(x)=1+cos(x)?

1 Answer

cosx=0cosx=0 or cosx = -1/2cosx=12

Explanation:

sin^2 x - cos^2 x = 1 + cosxsin2xcos2x=1+cosx
1-cos^2 x - cos^2 x = 1 + cosx1cos2xcos2x=1+cosx
-2cos^2 x - cosx = 02cos2xcosx=0
cosx(2cosx+1)=0cosx(2cosx+1)=0
cosx=0cosx=0 or cosx = -1/2cosx=12