How do you solve sin^2x + 2cosx = 2sin2x+2cosx=2 over the interval 0 to 2pi?

1 Answer
Mar 2, 2018

color(blue)(x=0,2pix=0,2π

Explanation:

Identity:

color(red)bb(sin^2x+cos^2x=1)sin2x+cos2x=1

sin^2x+2sinx=2sin2x+2sinx=2

Using identity:

1-cos^2x+2cosx=21cos2x+2cosx=2

Rearranging, simplifying and equating to zero:

cos^2x-2cosx+1=0cos2x2cosx+1=0

This is just a quadratic in cosxcosx

Let cosx=ucosx=u

u^2-2u+1u22u+1

Factor:

(u-1)(u-1)=0=>u=1(u1)(u1)=0u=1

u=cosxu=cosx

cosx=1cosx=1

x=arccos(cosx)=arccos(1)=>color(blue)(x=0,2pix=arccos(cosx)=arccos(1)x=0,2π