How do you solve sin(2x)=-cos(2x)sin(2x)=cos(2x)?

1 Answer
Jun 30, 2017

x = (3pi)/8 + kpix=3π8+kπ
x = (7pi)/8 + kpix=7π8+kπ

Explanation:

sin 2x + cos 2x = 0
Use trig identity: sin a + cos a = sqrt2cos (a - pi/4)sina+cosa=2cos(aπ4)
In this case:
sin 2x + cos 2x = sqrt2cos (2x - pi/4) = 0sin2x+cos2x=2cos(2xπ4)=0
cos (2x - pi/4) = 0cos(2xπ4)=0
Unit circle gives 2 solutions:
a. 2x - pi/4) = pi/2 + 2kpi2xπ4)=π2+2kπ --> 2x = pi/2 + pi/4 = (3pi)/4 + 2kpi2x=π2+π4=3π4+2kπ -->
x = (3pi)/8 + kpix=3π8+kπ.
b. (2x - pi/4) = (3pi)/2 + 2kpi(2xπ4)=3π2+2kπ --> 2x = (3pi)/2 + pi/4 = (7pi)/4 + 2kpi2x=3π2+π4=7π4+2kπ -->x = (7pi)/8 + kpix=7π8+kπ