How do you solve \sin 2x \cos x + \cos ^ { 2} 2x \sin x = - 1?

1 Answer

See below.

Explanation:

sin2x*cosx+(cos2x)^2*sinx=-1

2sinx*(cosx)^2+[1-2(sinx)^2]^2*sinx=-1

2sinx*[1-(sinx)^2]+[1-2(sinx)^2]^2*sinx=-1

After using u=sinx transform, this equation became;

2u*(1-u^2)+(1-2u^2)^2*u=-1

2u-2u^3+(4u^4-4u^2+1)*u=-1

2u-2u^3+4u^5-4u^3+u=-1

4u^5-6u^3+3u+1=0

(u+1)*(4u^4-4u^3-2u^2+2u+1)=0

No real solution from the second multiplier. From first one, u=-1.

Due to sinx=-1, x must be equal to (3pi)/2+2pi*k

1) I rewrote this equation in terms of u=sinx

2) I solved it or u.

3) I found x.